The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering

نویسندگان

  • Rickard Gunnarsson
  • Iris Pilch
  • Robert Boyd
  • Nils Brenning
  • Ulf Helmersson
  • Robert D. Boyd
چکیده

Titanium oxide nanoparticles have been synthesized via sputtering of a hollow cathode in an argon atmosphere. The influence of pressure and gas flow has been studied. Changing the pressure effects the nanoparticle size, increasing approximately proportional to the pressure squared. The influence of gas flow is dependent on the pressure. In the low pressure regime (107 ≤ p ≤ 143 Pa) the nanoparticle size decreases with increasing gas flow, however at high pressure (p = 215 Pa) the trend is reversed. For low pressures and high gas flows it was necessary to add oxygen for the particles to nucleate. There is also a morphological transition of the nanoparticle shape that is dependent on the pressure. Shapes such as faceted, cubic and cauliflower can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the effect of Argon flow on the morphology of B4C nanoparticles synthesized by the VLS method

In this paper, new various morphologies of boron carbide were successfully synthesized using carbon black, activated carbon and boron oxide precursors as well as using cobalt nanoparticles as catalysts. Almost the whole morphology of synthesized boron carbide are consisted of smooth nanowires and nanobelts. With decreasing the carbon black particles size from 29 nm to 13 nm (29, 23, 17 and 13),...

متن کامل

Investigation of the electrical properties and corrosion resistance of TiN coating deposited by reactive sputtering on the titanium bipolar plate, used in polymeric fuel cell

The effect of titanium nitride film on the properties of titanium bipolar plates used in polymeric fuel cell was investigated in this research. TiN coatings was deposited on the Ti-grade 1 substrate by using DC-sputtering method. Pure titanium was used as target and coating deposition was done in argon and nitrogen atmosphere. Different TiN thickness was developed by changing sputtering time. T...

متن کامل

Effects of the pH of Initial Solution on Hydrothermally Synthesized TiO2 Nanoparticles

In this paper, we focused on the effects of initial solution’s pH on the composition, structure and morphology of hydrothermally synthesized titanium oxide nanoparticles. TiCl4 and NaOH were used as titanium source and precipitant, respectively. Phase and structure determination of samples were obtained by X-ray diffraction (XRD) analysis. Scanning electron microscopy (SEM) images were used for...

متن کامل

Decorative Titanium Nitride Colored Coatings on Bell-Metal by Reactive Cylindrical Magnetron Sputtering

The transition metal nitrides like titanium nitride exhibit very interesting color variation properties depending on the different plasma deposition conditions using cylindrical magnetron sputtering method. It is found in this deposition study that nitrogen partial pressure in the reactive gas discharge environment plays a significant role on the color variation of the film coatings on bell-met...

متن کامل

Effects of Solvent on the Structure and Properties of Titanium Dioxide Nanoparticles and Their Antibacterial Activity

Titanium dioxide is semiconductor metal oxide having many applications in photocatalytic activities, cosmetics and in the food industry. It exists in three major crystalline forms: anatase, rutile and brookite. The solvents play a major role in the synthesis, stability and morphology of the metal oxide nanoparticles. It affects both the phase and particle size of metal oxide. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017